MACHINERY MONITORING Systems, llc

Machinery Monitoring Systems, LLC Fairview Technology Center 11020 Solway School Road Suite 105 Knoxville, TN 37931

MMS Product Overview

10/13/2022

Bryan Stewart – VP of Sales and Operations

Kent Petersen – VP of Product Management

Steve Follmar – CEO

Agenda

MACHINERY

MONITORING

- MMS Management Introduction
- Alliance Partners
- Technology Partners
- Current Product Portfolio Overview
 - Snapshot Engine Balancer
 - MachineryRX Web Application
 - Sentinel Compressor Monitoring
 - ProBalance and ProBalance Plus
 - What's Next
- MMS\RCT

MMS Management

Steve Follmar, President

- Windrock (Co-Founder)
- Cook Compression
- Beta Monitors
- Bentley Nevada

Glenn Mincher, VP Engineering

- Windrock (Co-Founder)
- CSI (Emerson)
- Bentley Nevada

Kent Petersen, Product Manager

- Windrock
- MAARS
- Nuclear Power Industry

Donna Stewart, VP Marketing & Training

Medical Administration & Training

Bryan Stewart, VP Sales & Operations

- Hoerbiger
- Digicon
- KCI (Exterran)
- Ingersoll-Rand

Warren Laible, Subject Matter Expert

- Windrock
- Weatherford Global Compression
- Ro-Cip

John Biondolillo, VP Business Development

- Linde (Praxair)
- JM Canty Process Technology

Rachel Clark, Manufacturing Manager

- Windrock
- Siemens

Alliance Partners

Exline

- Exclusive Distributor & Installation Services
- Packing Leak Sensor Manufacturer

ACI Services

- Software
- Compressor Models

STI Vibration Monitoring

- Monitoring Products
- Machining Services

Radical Combustion Technologies

- Clean Energy Solutions
- Advanced Engine Controls

STI Vibration Monitoring Inc. An ISO 9001:2015 Certified Company

Technology Partners

Monico

- Industrial Computing
- Software & Edge

IMES

- Pressure Sensors
- Engine Monitoring

PCB Piezotronics

- Accelerometers
- Impact sensors
- Ultra-Sonic Sensors

Shinkawa

- Proximity Products
- Vibration Monitoring

MACHINERY

MONITORING

SYSTEMS, LLC

PCB PIEZOTRONICS AN AMPHENOL COMPANY

Current Product Portfolio

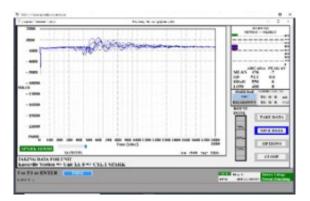
Snapshot[®] - Portable Engine Balancer Pressure and Ignition Analyzer

MachineryRX Web Application

ProBalance - 24/7 Monitoring

Sentinel Compressor Monitoring Embedded ACI eRCM Model

- Dynamic Pressure sensors
 - Alarms on Safety limits
 - Automated Diagnostic alarms
- Vibration and Impact sensors
 - Xhead, frame, cylinder and bearings
- Packing Vent Leakage sensor
 - Aid in Packing diagnostics
- Rod Drop sensor
 - Rider Band wear


Snapshot[®] Portable Engine Balancer

Dynamic Engine Pressure

Control transmission of the sector of the se

Ignition

MACHINERY MONITORING Systems, LLC

Kent Machinery R L Kent MMS

MachineryRx Admin

🔒 Home

Locations

🐣 Technicians

🕹 User Management

🕸 Sys Admin

🚯 Import Data

G Machinery **R**

Moore Gas Pipeline

✓ Balance Job Status

	Summary Level	Total Machines	Total Balances	Balanced Early	Balanced Late	Avg Hours Between Balances	Avg Minutes to Balance	Percent Left Good	Personnel Involved	Total Rated P
≁	Division 1	5	8	100.0%	0.0%	305.6	56.5	100.0%	2	10,550
k]	Division 9	9	44	0.0%	2.0%	5067.0	1858.3	27%	3	19,400
		14	52	15.4%	1.92%	2686.3 hrs	1421.5 min	38.5%	3	29,950

V Recent Balance Jobs

	Location	Rated Power	Model Number	Manufacturer	Balanced By	Balance Date	Time To Balance (Minutes)	As Found Balance	As Found Condition	As Left Balance	As Left Condition
জ্ঞ লি 🗄	Unit 1	1500	410-KVR	Ingersoll Rand	PaulW	Sep 28, 2021	56 min	0	Fair	3.0%	Good
∰ ⊠ ﷺ	Unit 3A	1650	HBA-6T	Clark	Kent	Sep 24, 2021	0 min	0	Unknown	n/a	Unknown
⊉ 🖂 🗄	Test 4 Cylinder	1000	Model Number	Cooper	Kent	Sep 22, 2021	0 min	2.6%	Good	n/a	n/a
ৰু লি 🗄	Test 4 Cylinder	1000	Model Number	Cooper	Kent	Sep 22, 2021	6 min	2.6%	Good	2.6%	Good
ৰু লি 🗄	Test 4 Cylinder	1000	Model Number	Cooper	Kent	Sep 10, 2021	0 min	2.6%	Good	n/a	Unknown

+10 Jobs

Machinery Monitoring Systems, llo

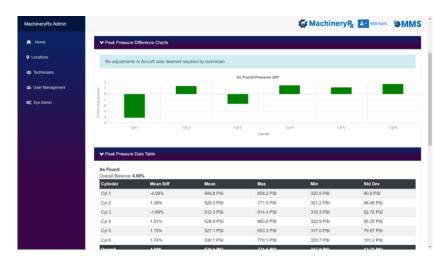
A new way to track Machinery Health across the company

- Accessed with Browser
- Can be run in the Cloud or on a User's Network
- Type of Machine, OEM, Vintage or Sensor suite does not matter
- Data is encrypted
- SQL database is setup by Company, Division, Area, Station and Machine
- Adding, deleting and setting Users access\capabilities is done by Sys Admin
- Static, dynamic and calculated data can be collected, arranged and displayed as Management Reports, Dashboards or Trend graphs
- Technical Staff with proper credentials can drill down to individual sensor waveforms in a wide variety of typical formats

Typical Display of Reports and Plots

Pressure and Ignition waveforms

Vibration waveform and FFT


MACHINERY

MONITORING

SYSTEMS, LLC

Engine Balance Plot

Panel Points

Name	As-Found	As-Left
Torque Load	99.3%	
Engine Speed	300.0 RPM	
Compressor Brake Power	1,530 hp	
Ignition Timing	11 °ATDC	
Air Manifold Pressure	7.14 PSI	
Fuel Flow	12.6 ft ³ /hr	
Fuel Pressure	46.2 PSI	
Lower Heating Value	7,576 BTU/ft³	
Exhaust Temp	Cyl 1 750.0 F	Cyl 1
	Cyl 2 749.0 F	Cyl 2
	Cyl 3 839.0 F	Cyl 3
	Cyl 4 817.0 F	Cyl 4
	Cyl 5 782.0 F	Cyl 5
	Cyl 6 919.0 F	Cyl 6
Brake Specific Fuel Consumption	62.39059BTU/HP-hr	

Sentinel[®] Compressor Monitoring

- Designed for high-speed data collection
 - Used for Safety alarming startup issues, rod Loading, Vibration etc.
 - Real time IHP for control application
- 3 Versions available
 - CPM compressor dynamic pressures
 - VM Vibration and Flow sensors
 - EPM Engine dynamic pressures ***
- Wide range of sensors for most applications
 - Voltage and current pressure sensors
 - Packing vent flow sensors
 - Rod Drop sensors
 - Vibration sensors
 - Accelerometers
 - Velometers
 - Proximity
 - Impact Sensors

MACHINERY

MONITORING

SYSTEMS, LLC

*** EPM Not yet released

Sentinel[®]-CPM Compressor Performance Monitor

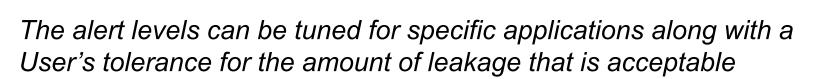
- 12 Input channels plus 2 phase trigger inputs Cylinder PVs & PTs
- Utilizes an ACI eRCM Kernel to calculate horsepower and additional performance parameters for each compressor cylinder.
- Results of the performance calculations are communicated to the customer PLC via TCP MODBUS or Serial RS485.

MACHINERY

MONITORING

Embedded MMS version of the ACI eRCM Kernel

- ACI eRCM Kernel with MMS enhanced performance calcs using *real time dynamic waveforms* (PVs & PTs).
- Compares theoretical calculated values from the eRCM Model with actual measured values in real time. Notable differences can help identify problems before they become failures.
- Real time measurements and alarming of rod loads, degrees of reversal, IHP and flow.


MACHINERY

MONITORING

Additional Diagnostics

The CPM automated diagnostic program alerts on all of the most common compressor faults

- Suction and Discharge valve leakage
- Piston ring leakage
- Packing leakage
- Unloader\Load step issues

CPM Sensor Suite

- DC pressure sensors
 - IMES DC pressure sensors
- Magnetic Pickups
 - Altronic Magnetic pickups
- Packing Vent Flow Sensor
 - Used to enhance the embedded diagnostic program to differentiate between suction valve and packing leakage

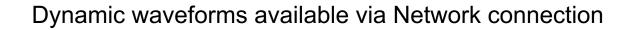
Machinery Monitoring Systems, LLC

Detail Cylinder Data

MACHINERY

Data available via Modbus and Web Browser

⊂				ure 192.16			fice 365	🕽 Amazon 🔅	Balance	erPWA	ProBalance Syste	m 🔝 Ma	achineryPy	Website M	Inbox - kentm	neter		Ē	ਘ	 628	*	Other	bookma
_	1en	u	ivis website	AWS M	gint con					-	CPM S					peter				م	аснік Мог		
Cyl#	End	нр	Suction Pressure (psi)	Discharge Pressure (psi)	Comp	Dischage VE (%)		Theoretical Discharge Temperature (F)	FB	Flow (mmscfd)	(%)	Comp Ratio Limit HE/CE(%)	Suction Temp (F)	Discharge Temp (F)	Rod Reversal (degrees)	lension	Rod Load Compression (klbf)						
1		763.5	417.1	911.6					0.97	21.16		14.1	0	0	165	70.9	74.4						
2		685.9	459.3	963.8					1.00	22.87		2.0			17	65.4	70.0						
2		766.8	429.1 440.8	926.1 938.1	2.12				0.98 1.00	21.82 22.24	21.00 24.00	3.9	0	0	17\$	65.4	79.2						
3		770.8	448.6	949.6					1.00	22.80		7.9	0	0	175	60.8	84.7						
	CE	678.8	426.5	925.9	2.13	45.9	80.7	87.9	0.98	21.13	23.00		1		I	1							
Init I)ata																						
RF	M	Tot	tal HP	Total Flow	7	rage Discl Pressure (p	-	Average Sucti Temp (F)	on g	Sensor Fla	gs Alarm Fla	ngs OPT Fl	lag										
-	250.0	D	4352	132	.0	1	1871.7		0.0		0	64	0										
larn	<u>S</u>																						
		Limit eeded		Comp Lim Exceeded		Tension Excee		Min Rod Re Degree Not M	es	Compr	ession Ratic ceeded	Diff	ion Toe erence eeded										
	1	No		No		No	0	No			No		Yes										
	osti	~~																					_

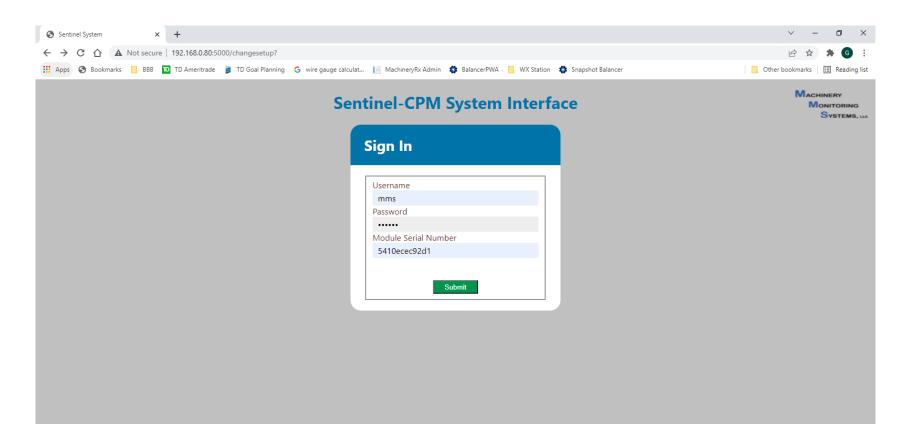

Sample Diagnostic Data

MACHINERY

MONITORING

Sentinel System	m	× +											\vee	—	
→ C	A Not secu	ire 192.168.0.80:5	000/data?										🖞	ä 🛪 🗆	К
Google MMS N	MMS Website	😑 AWS Mgmt Con	sole 🧃 Office 365	a Amazon 🌼	BalancerPWA	ProBalance Sy	stem 📔	MachineryRx	Website M	Inbox - kentmp	eter			📙 Othe	r bookm
CE 687.3	3 441.4	938.9 2.09	46.3 8	2.0 85.4	4 1.00 22.	.27 24.0	0		-						
3 HE 767.6		925.9 2.13			8 0.98 21.			0.2 (0 7	6 170	64.2	81.1			
CE 679.0	427.1	926.5 2.13	3 45.9 8	0.7 87.	8 0.98 21.	.16 23.0	0								
<u>it Data</u>															
RPM To	otal HP	Intal Flow	erage Discharge		ion Sensor I	Flags Alarm	Flags OPT	Flag							
			Pressure (psi)	Temp (F)											
250.0	4353	130.0	1859.1		0.0	0	0	0							
<u>rms</u>															
HP Limit		Comp Limit	Tension Limi	Min Rod R	eversal	pression Ra		iction Toe							
					Com	Dression na									
Exceeded		Exceeded	Exceeded	- Degre	es	Exceeded	D	ifference xceeded			ŀ				
Exceeded No				Legre Not M No	ees let	•	D		-		•				
		Exceeded	Exceeded	Degree Not N	ees let	Exceeded	D	xceeded			h				
No Ignostic Indic		Exceeded No	Exceeded No	Degree Not N	ees let	Exceeded No	E	xceeded No	netric						
No		Exceeded	Exceeded No	Degree Not N	ees let	Exceeded No	D	xceeded No Volur	netric iency	Tempe		Estimated			
No Ignostic Indic		Exceeded No	Exceeded No	Degree Not N	ees let	Exceeded No	E	xceeded No Volur			rature	Estimated Leak Effect %			
No Ignostic Indic linder End Re	cators	Exceeded No Valv	Exceeded No ves	Degre Not M	Pack	Exceeded No ing	Rings	No No Volur Effic Min VE	iency <i>Min VE</i>	Tempe	rature	Leak Effect			
No No No No No No No No No No	cators lecomm No Call No Call	Exceeded No Valv Flow Bal OK OK	Exceeded No Ves Clearance OK OK	Degre Not M No No No OK	ees let Pack Recomm No Rod No Call	Exceeded No ing Leak	Rings Recomm No Call	No Volur Effici Min VE Suc OK OK	iency Min VE Disch OK OK	Тетре <mark>Δ-T Disch</mark> ОК ОК	rature Max Disch OK OK	Leak Effect % 1.1 1.4			
No Spostic Indice Iinder End AE AE AE AE AE AE AE AE AE AE	cators cecomm No Call No Call No Call	Exceeded No Valv Flow Bal OK OK OK OK	Exceeded No Ves Clearance OK OK OK	Degrey No No <i>n-Ratio</i> OK OK	Pack Recomm No Rod No Call No Rod	Exceeded No ing Leak No Leak No Leak No Leak	Rings Recomm	Xceeded No Volur Effic Min VE Suc OK OK OK	iency Min VE Disch OK OK OK	Τетре Δ-Τ Disch ΟΚ ΟΚ ΟΚ	rature Max Disch OK OK OK	Leak Effect % 1.1 1.4 1.0			
No BIOSSIC INDIC BIOSSIC ANDIO BIOSSIC ANDIO BI	cators lecomm No Call No Call	Exceeded No Valv Flow Bal OK OK	Exceeded No Ves Clearance OK OK	Degre Not M No No No OK	ees let Pack Recomm No Rod No Call	Exceeded No ing Leak No Leak No Leak	Rings Recomm No Call	No Volur Effici Min VE Suc OK OK	iency Min VE Disch OK OK	Δ-T Disch ΟΚ ΟΚ ΟΚ ΟΚ	rature Max Disch OK OK	Leak Effect % 1.1 1.4			
No Provide the second	cators cecomm No Call No Call No Call	Exceeded No Valv Valv Flow Bal OK OK OK OK Suction Leak	Exceeded No Ves Clearance OK OK OK	Degrey No No <i>n-Ratio</i> OK OK OK OK Suction Leak	Pack Recomm No Rod No Call No Call	Exceeded No ing Leak No Leak No Leak No Leak	Rings Recomm No Call	Xceeded No Volur Effic Min VE Suc OK OK OK	iency Min VE Disch OK OK OK	Τетре Δ-Τ Disch ΟΚ ΟΚ ΟΚ	rature Max Disch OK OK OK	Leak Effect % 1.1 1.4 1.0			

Phased P-T & P-V Curves



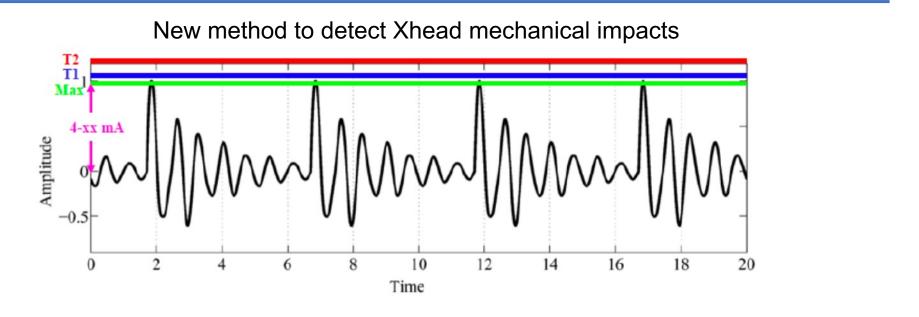
MACHINERY

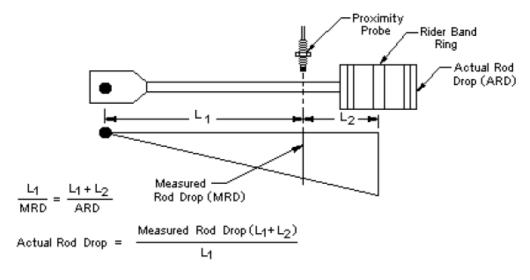
MONITORING

TSA Compliant Log-In

MACHINERY

MONITORING

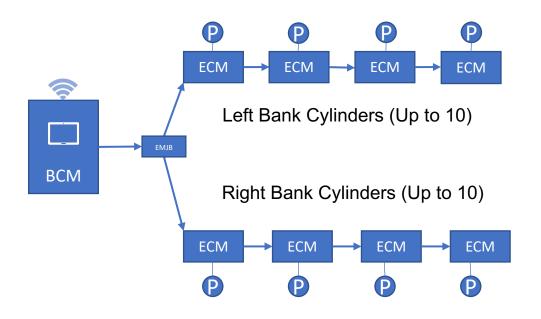

Sentinel[®]-VM Vibration Monitor


Upper / Lower V1/V2	Sentin	el [®] - VM	Alarm COM NC
V3/V4	Vibrat Model N	tion Monitor Jumber M1520-01	
V 5/V 6			Ethernet
¥7/¥8	Certified Pupelects for	NON-INCENDIVE Class I, Division 2, Groups A, B, C, D (Pending) Temperature Code: 14 Power Consumption: 18-36 VDC @ 13W	
V 9 / V 10	PENDING WARNING-EXPLOSION HAZARD, DO NOT C AVERTISSEMENT – RISQUE O'EXPLOSION, NI Install is accordance with MMS Control Dro	Temperature: 32 'F - 140 'F (0-60 'C) ONNECT OR DISCONNECT WHEN ENERGIZED. (PAS BRANCHER NI DEBRANCHER SOUS TENSION wring: CD1501-001-R1	MODBUS
V 11 / V 12	Machinery Monitoring	11020 Solway School Road, Suite 105 Knoxville, TN 37931 USA www.mmsysilc.com	
	Systems, up		MODBUS ^A RS-485 B
SIG TDC	Deia Deia	× 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 VDC IN
			~

- 12 Vibration sensor inputs
 - Accelerometers
 - Velocity pickups
 - Proximity probes
- Crosshead vibration/impacts
- Frame/Bearing vibration
- Cylinder/Frame Movement
- Rod Drop\Rod Runout
- Communicate to Unit PLC
 - Modbus TCP
 - Modbus RS-485
- Web interface

Sample of new Sentinel-VM input devices

- Rod Drop = Rider Band Wear
- Rod Runout = Mechanical looseness



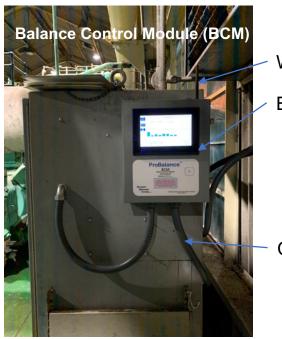
MACHINERY

MONITORING

ProBalance / ProBalance Plus

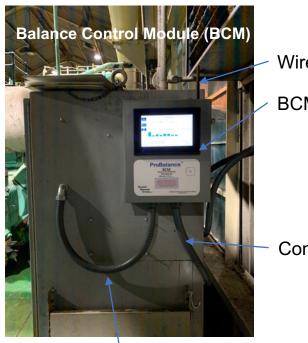
- BCM (Balance Control Module) mounted to UCP (Magnet or Bolted)
- Customer provided conduit BCM EMJB (Engine Mounted Junction Box)
- MMS-supplied cables EMJB ECMs (Engine Cylinder Module)
 - Armored
 - 6-Pin Amphenol Connectors
- MMS-supplied cables ECM-ECM
- Dual Port Kiene valves on each cylinder
- IMES or Kistler pressure sensors on each cylinder

BCM mounted to UCP


MACHINERY MONITORING Systems, LLC

Wireless antenna

BCM mounted to UCP

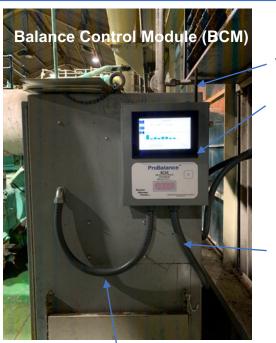


Wireless antenna

BCM mounted to UCP

Conduit to EMJB

MACHINERY MONITORING Systems, LLC



Power (24VDC) and communications (MODBUS IP or RS-485) Wireless antenna

BCM mounted to UCP

Conduit to EMJB

MACHINERY MONITORING Systems, LLC

Wireless antenna

BCM mounted to UCP

Conduit to EMJB

Power (24VDC) and communications (MODBUS IP or RS-485)

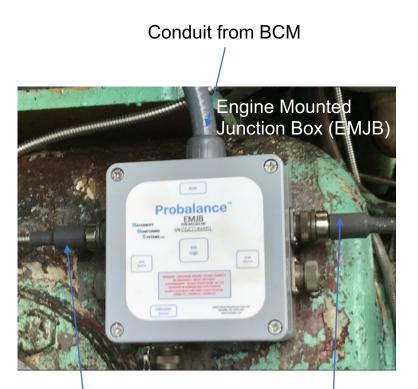
MACHINERY

MONITORING

Power (24VDC) and communications (MODBUS IP or RS-485) Wireless antenna

BCM mounted to UCP

Conduit to EMJB



Wireless antenna

BCM mounted to UCP

Conduit to EMJB

Power (24VDC) and communications (MODBUS IP or RS-485)

Armored Cables to Bank A & B ECMs

One per cylinder Daisy-chained Communications & Power

Dual-port Kiene valve w/ pressure sensor

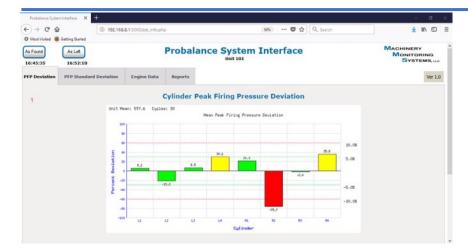
MACHINERY

MONITORING

ProBalance Use

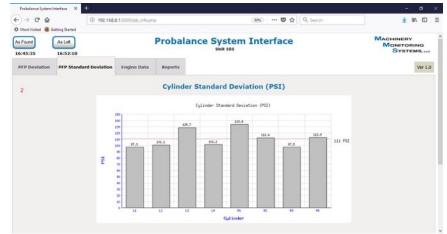
- Live, continuous PFP data wirelessly to tablet
- Adjust balancing valve on cylinder
- See effect on balance for all cylinders immediately
- Operator verifies balance anytime on the BCM (at UCP)

ProBalance Use

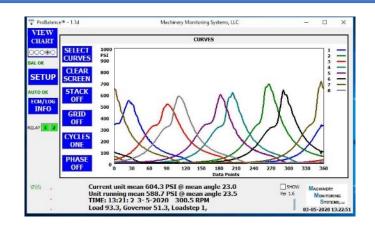


10 45 – 90 Minutes for an 8-cylinder engine

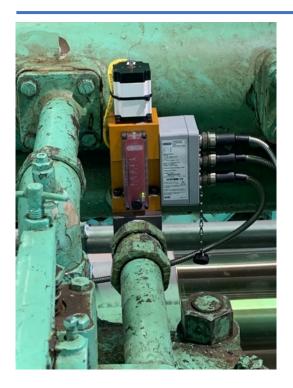
- Live, continuous PFP data wirelessly to tablet
- Adjust balancing valve on cylinder
- See effect on balance for all cylinders immediately
- Operator verifies balance anytime on the BCM (at UCP)


ProBalance Tablet Screens

MACHINERY MONITORING Systems, LLC


Found As Left 145:35 16:52:1	0	Pr	obalan	ce Sys		nterf	ace		MACHINERY MONITORING Systems	
P Deviation PFP	Standard Deviation	Engine Data R	ports						Ve	r 1.0
E	CM Parameters			c	alculated	d Results				
Parame		Value	Cylinder#	PFP Mean	PFP STD DEV	PFP Min	PFP Max	RPM		
PFP Mean (current		613.7	L1	649.1	109.3	500.0	782.0	300		
PFP Mean (running	1)	608.6	L2	598.6	122.8	426.0	769.0	300		
Engine Speed		300.0	L3	626.6	125.2	433.0	782.0	300		
Number of Cycles		30	L4	604.4	115.4	450.0	766.0	300		
			R1	585.2	97.0	433.0	737.0	300		
			R2	602.0	99.9	443.0	769.0	300		
			R3	591.2	108.2	450.0	769.0	300		
			R4	652.2	109.5	426.0	782.0	300		

ProBalance BCM Screens



	ProBalance®	- 1.1d Machinery Monitoring Systems, LLC				-	D X	
ALC: NOT THE AVERAGE	VIEW	CYLINDER MEAN (PSI)		GF	UD ST.	ATS		1
	CHART -			Mean S De		Low 507	Exh T State	П
	000000 =		2 6	503.7 49.6 505.4 49.7	671	398	729	Ш
and the second sec	BALOK	691	4	597.8 61.8	694	491	718	П
And the second sec	SETUP		6 5	605.3 64.7 588.5 59.1	703	450	741	Ш
Tanto a la companya de la companya d	SETUP		7 5	595.4 74.6	684	299 454	818	Ш
Problemon	AUTO OK							Ш
	ECM/LOG	1 2 3 5 6 7 8						
	INFO	TREND OF UNIT MEAN (PSI)						П
	-	647						П
	RELAY 1 2							Ш
		559						П
		529						1
	_	w to Old-> Running Mean with Time Span 64.4 min	1					
	REPLAY							
	OFF							
	SCAN	Current unit mean 600.9 PSI @ mean angle 22.6 Unit running mean 587.9 PSI @ mean angle 23.5		Ver	SHOW		INERY	
	SCAN.	TIME: 13:19:54 3- 5-2020 300.3 RPM		10	1		SYSTEMS IN	
		Load 93.2, Governor 51.7, Loadstep 1,			1		2020 13:21:4	16

Version 2.0 updated User Interface to be released soon

MACHINERY MONITORING Systems, LLC

ProBalance Plus Upgrade


Automatic Balancing w/ ProBalance Plus

Add electronically controlled fuel balancing valves

MACHINERY

MONITORING

- Comm cable from each ECM
- Daisy-chained power from EMJB

Electronic Balancing Valve Features


Comparison of MMS ProBalance Plus Balancing Valve to Others

MMS eFGM	Others	Comments
Position feedback	None	No calibration of valves necessary
Stepper motor directly coupled to valve	Rubber belt	Reliability
Temperature sensor in valve	None	Identifies hi temp valve body Common valve failure is from a failure of the cam operated fuel valve
Retrofittable to existing manual CECO FGMs	No	Years of operating experience with CECO balancing valves
EMI & Vibration ruggedized	No	Reliability
Simplified wiring (Power – 24VDC & Serial Pair)	6 conductor cable from UCP to each valve	Reliability, ease of installation & cost
Manual override adjustability	No	Stem on top of stepper motor
High torque stepper motor	No	Supports manifold pressures up to 125 PSI

Electronic Balancing Valve Features

Comparison of MMS ProBalance Plus Balancing Valve to Others

Ī	MMS eFGM	Others	Comments
	Position feedback	None	No calibration of valves necessary
	Stepper motor directly coupled to valve	Rubber belt	Reliability
	Temperature sensor in valve	None	Identifies hi temp valve body Common valve failure is from a failure of the cam operated fuel valve
	Retrofittable to existing manual CECO FGMs	No	Years of operating experience with CECO balancing valves
	EMI & Vibration ruggedized	No	Reliability
	Simplified wiring (Power – 24VDC & Serial Pair)	6 conductor cable from UCP to each valve	Reliability, ease of installation & cost
	Manual override adjustability	No	Stem on top of stepper motor
	High torque stepper motor	No	Supports manifold pressures up to 125 PSI

ProBalance Experience

- TLA-8
- TLAD-5
- GMW-8
- GMVH-12
- HBA-6
- HBA-10
- TCV-16
- W-330
- Z-330
- KVR-8 (PO Pending) will be 1st 4 stroke engine

Optional Balancing Methods

- **Peak Firing Pressure (PFP)** is the most common balancing method probably due to the history of balancing it was easy to measure.
- It is accomplished by measuring the firing pressures of all the cylinders, calculating the mean of those pressures, and adjusting the firing pressures as close to that mean pressure as possible.

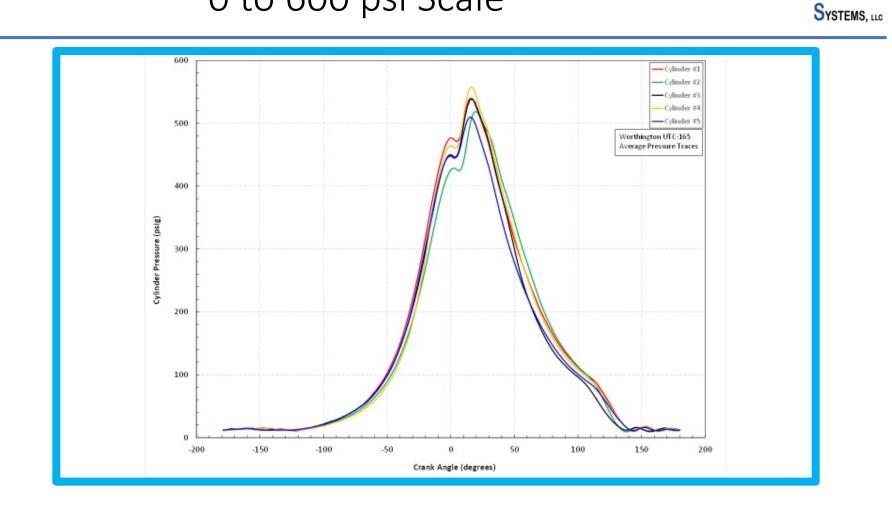
OR

Peak Pressure Ratio (PPR) is a method suggested in EPPL / SWRI / DOE study in 2008. In this method, the PFP and the unfired Compression Pressure (Cp) of each cylinder is measured.

The compression pressure is an indication of how much air is trapped in the cylinder. Since we cannot change that, by inputting the proper amount of fuel into each cylinder, we can control the equivalence ratio, which profoundly influences the combustion process.

• The PFP is divided by the Cp establishing the PPR.

 $PPR = PFP \div Cp$


- Multiplying the Average PPR by the individual cylinder Cp's generates the target PFP for that cylinder.
- Research has proven that utilization of the PPR method reduces NOx, COV's and associated crankshaft stresses induced by rapid variations in angular velocities imparted by unbalance and misfires*.

*FINAL REPORT SwRI® Project No. 18.06223 DOE Award No. DE-FC26-02NT41646

MACHINERY

MONITORING

Cylinder Pressure v Crank Angle 0 to 600 psi Scale

MACHINERY

MONITORING

Cylinder Pressure v Crank Angle MACHINERY MONITORING 400 to 580 psi Scale SYSTEMS, LLC 580 -Cylinder #1 -Cylinder #2 -Cylinder #3 560 Cylinder #4 -Cylinder #5 Worthington UTC-165 540 Average Pressure Traces 520 Cylinder Pressure (psig) 500 480 460 440 420 400

-20

-10

0

10

20

Crank Angle (degrees)

30

40

50

PFP vs PPR

580 -Cylinder #1 AVG Compression Peak -Cylinder #2 P_P / C_P PPR * Pressure -Cylinder #3 Pressure 560 СР -Cylinder #4 1.20 546.84 465 558 Orange -Cylinder #5 540 562.13 478 Worthington UTC-165 540 Average Pressure Traces 450 540 1.20 529.20 Black 510 Blue 448 1.14 526.85 1.21 505.68 430 520 520 Green Average PPR 1.18 Cylinder Pressure (psig) 500 480 460 440 420 400 -20 -10 0 10 20 30 40 50 Crank Angle (degrees)

MACHINERY MONITORING Systems, LLC

Machinery Monitoring Systems, llo

- New ProBalance Software Release
- Add PPR as an optional balancing method
- Integration of ProBalance into the MachineryRX app
- New Automatic Balancing Valve
- New Balance of Plant System

Does not require turbocharger OR HPFI installation/upgrades.

- RCTClean vs Competition:
 - 1) 40-50% Lower in Cost
 - 2) Performs Better
 - 3) Project time cut in half (6 mos vs 12 mos)
- *RCTClean* retrofit for GMV-class engines enables:
 - 1) Compliance with EPA NOx limit of 3.0 gr/bhp-hr.
 - 2) Compliance with EPA CH4 (Methane) limit of 5.3 gr/bhp-hr.
 - 3) Engine stability improvement over 50% (COVs < 6.0%).
 - 4) A \$1.5mm cost savings vs the traditional industry solutions.
 - Note (1) *RCTClean* 3 OgrSolution is Patent Pending

MACHINERY

MONITORING

3.0 gr Solution Demonstration⁽¹⁾⁽²⁾⁽³⁾

GMV-4 Parameters	Baseline GMV	RCTClean 3.0gr ⁽³⁾	Change (+/-%)
Load (HP)	480	492.6	na
AMP ("Hg)	9.45	11.81	na
AMT (°F)	129.7	138.8	na
NOx (gr/bhp-hr)	8.10	1.09	-86.5%
CO (gr <mark>/bhp-hr)</mark>	5.92	3.54	-40.2%
THC (gr/bhp-hr)	10.73	6.47	-39.7%
VOC (gr/bhp-hr)	1.46	1.51	+3.4%
CH4 (g <mark>r/bhp-hr)</mark>	8.18	4.98 ⁽²⁾	-39.1%
CH2O (gr/bhp hr)	1.29	1.32	+2.3%
BSFC (BTU/bhp-hr)	9145.70	9258.02	+1.2%
Misfires (%)	0.225	0.000	-100%
COV (%)	12.4	5.51	-55.6%

MACHINERY

MONITORING

SYSTEMS, LLC

CSU Energy Institute GMV-4 Cooper Bessemer Test Engine

Note: (1) Data results CSU GMV-4 test conducted 9/27-28/2022

(2) All data taken at LOPP 18 ATDC. Advancing LOPP will reduce CH4, THC, CH20 and improve BSFC.

(3) RCTClean 3.0gr Solution is Patent Pending

Questions ?

Thank You!

Bryan Stewart bstewart@mmsysllc.com (713) 829-8259

Kent Petersen kpetersen@mmsysllc.com (865) 228-5444

Steve Follmar <u>sfollmar@mmsysllc.com</u> (936) 264-6421